Application of QSPR to Mixtures

نویسندگان

  • Subhash Ajmani
  • Stephen C. Rogers
  • Mark H. Barley
  • David J. Livingstone
چکیده

In this paper we report an attempt to apply the QSPR approach for the analysis of data for mixtures. This is an extension of the conventional QSPR approach to the analysis of data for single molecules. The QSPR methodology was applied to a data set of experimental measured density of binary liquid mixtures compiled from the literature. The present study is aimed to develop models to predict the "delta" value of a mixture i.e., deviation of the experimental mixture density (MED) from the ideal, mole-weighted calculated mixture density (MCD). The QSPR was investigated in two perspectives (QMD-I and QMD-II) with respect to the creation of training and test sets. The study resulted in significant ensemble neural network and k-nearest neighbor models having statistical parameters r2, q2(10cv) greater than 0.9, and pred_r2 greater than 0.75. The developed models can be used to predict the delta and hence the density of a new mixture. The QSPR analysis shows the importance of hydrogen bond, polar, shape, and thermodynamic descriptors in determining mixture density, thus aiding in the understanding of molecular interactions important in molecular packing in the mixtures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used.

Dermal absorption of topically applied chemicals usually occurs from complex chemical mixtures; yet, most attempts to quantitate dermal permeability use data collected from single chemical exposure in aqueous solutions. The focus of this research was to develop quantitative structure permeation relationships (QSPR) for predicting chemical absorption from mixtures through skin using two levels o...

متن کامل

Application of Graph Theory to Some Thermodynamic Properties and Topological Indices

The relationship between the Randic , Wiener, Hosoya , Balaban, Schultz indices, Harary numbers andDistance matrix to enthalpies of formation (Airf), heat capacity, (Cp) , enthalpies of combustion (AH °c ),enthalpy of vaporization (AH °vap) and normal boiling points (bpK)of C2 C10 normal alkanes isrepresented

متن کامل

Computational Techniques Application in Environmental Exposure Assessment

In this chapter, the application of computational techniques in environmental exposure assessment was described. The most important groups of these techniques are Multimedia Mass-balance (MM) modelling and Quantitative Structure-Activity/Structure-Property Relationships (QSAR/QSPR) modelling. Multimedia Mass-balance models have been widely utilized for studying Long-Range Transport Potential (L...

متن کامل

Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM)

The Online Chemical Modeling Environment (OCHEM, http://ochem.eu) is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we e...

متن کامل

Application of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids

It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2006